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0. Introduction and preliminary notations

The class of “tent spaces” T} was introduced by Coifman, Meyer and Stein in [6]
and [7], where applications to Harmonic Analysis were given. Recently several papers
have paid attention to these spaces. See [1], [2], (3], [4], [9] and the references given

there.
The definition of tent spaces is made using two kinds of functionals. Let 0 < g < co.

For a complex-valued measurable function f over Rf’l, define:

1/q
dy d
Aaf(z) = ( ]F o Fw o f’T}‘) :

dy dt\M/*
crs@) =swp (5 [ 1f 0 E2)

where I'(z) stands for the cone of all (y,t) € R such that € B(y,t) and the “sup”
in the definition of C,f(z) is taken over all balls B that contain the point 2 € R". For
any such ball B, B stands for the “tent over B” of all (y,¢) € RY*" with B(y,t) C B.
It is also defined

Acof(z) = sup(y yer(m)| f(¥:t)l;

the non-tangential maximal function.

With the previous notations, T} spaces are defined by the conditions A, f € L*(R")
0 < p,g<ooand Cpf € L®°R")if0 < g < ooandp=co f0<p<oe TE
is defined to consist of all continuous f with non-tangential boundary limits such that
Asf € LF(R™).

Supplied with the obvious functionals, 77 are quasi-Banach spaces. Moreover they
are Banach spaces when 1 < p,q < co.

An important result is the duality theorem. The bilinear map

(o) =1BOD) [ ftrat S M

* This paper is in final form and is partially supported by DGICYT/PS87-0027.
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realizes Tq‘,’,’ as an equivalent dual to TP when 1 < p< 00,1 < g < oo and p' and ¢’ are
the conjugate exponents to p and q. See [7].

The purpose of this paper is to study the complex interpolation of these spaces
making use of the fact that there is an isometry from T} into certain vector-valued L?
spaces if 0 < p,q < oo. We will obtain the identification

T8 T e =17 (2)
when 0 < Po,P1,90,01 < 00, 1/p = (1 -.-9)/})0 +8/p1 and 1/q = (1 - 9)/?0 +9/QI AISO’
we will make a few remarks on the extreme cases. We observe that this identification
has been made so far if o = g1 = 2 and 1 € pg,p1 < oo in [7]; when gg = @1 = o0
and 1 < pg,p1 < o0 in [1]; when g = ¢; = 2 and 0 < pg,p; € oo in [2] and when
1 < po,p1:9o, 91 < 00 in [4].

Since the possibility that the parameters could be smaller than one is considered,
we will discuss briefly in section 1 the complex interpolation theory for quasi-Banach
spaces. Section 2 is devoted to the study of (2) in the intermediate cases 0 < p;, ¢; < o0,
7 = 0,1 and section 3 is devoted to obtain some extreme cases.

1. Complex interpolation theory for quasi-Banach spaces

Complex interpolation theory for quasi-Banach spaces has been considered by sev-
eral authors and the method which will be briefly described here for the shake of com-
pleteness is that of [4], where comments relating it to other possibilities are also given.

The starting point is a complex interpolation pair (Xg, X;) such that the sum
space X + X can be continuously embedded into an A-convex space Y. A complex
quasi-Banach space U is said to be A-convex, Kalton [11], if whenever ¢ is an L{-valued
continuous function on the closed unit disk which is analytic on its interior, then

I#(0)| < C P [1é(=)ll,

for some constant C independent of ¢. This is equivalent to the existence of an equivalent
plurisubharmonic quasi-norm on U.

From this point, the idea is to replace in the original construction of Calderdn [5] the
sum space. by the space I{. More precisely, the admissible functions in the construction
of the complex method will be defined in the closed unit strip 5, will take values in
U and will be bounded, continuous and analytic on S. Furthermore, they will verify
the habitual boundary conditions, so that f(j + it) € X;, j = 0,1, boundedly and
continuously. We impose a further condition to a function to be admissible: there must
be a sequence of finite rank functions

$a:§ = XoN X,

bounded, continuous, analytic on S such that ¢, converges to f X;-uniformly over
j + iR, 7 = 0,1 (thus U-uniformly over 5). It would be interesting to know if this last
condition is a consequence of the previous ones, as in the Banach space case. We will
denote by G = G(Xp,X1) the class of the above described finite rank functions and by
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F = F(Xo,X1) = F(Xo, X1;U) the class of all admissible functions. The space F is a
quasi-Banach space when endowed with the functional

Ml = mox {sup 16y mup AL+ 8, |

where the subscript “H(2)" is placed to follow the notations of [4]. For 0 < 8 €1
the space of all f(#), with admissible f, will be denoted by Xg) i or (Xo, X1 )je)u- It
turns out to be a quasi-Banach space when endowed with the habitual quotient quasi-
norm. The so defined space (Xo, X1 {9, densely contains the intersection Xy N X; and
is continuously embedded in I, It is false in general that it is contained in the sum
Xo + X;. Nevertheless, if we have another pair (¥5,Y¥];) and an A-convex containing
space ¥ for this second pair, then any continuous linear operator T:4 — V such that
T:X; — Y; with constant M;, j = 0,1, must map X{4 y into Y}y y with constant not
exceeding M) ~? M},

The fact that the operator T should be a priori defined and be continuous on
the whole space If is a negative property of this method. However, if (Xg,X;) has
an A-convex containing space, there always exists another A-convex space that will
generically be denoted by A (see [4] or [11] for details) such that, whenever an operator
T is bounded from Xj into ¥}, j = 0,1, it automatically extends to a bounded operator

TA: A— V,
the preceeding appies and
TA: (th Xl )I9I,A — (1,0’ 1,l)[ﬂl,'l""

This will make it important to compute in the quasi-Banach case the complex interpo-
lation spaces with respect to this canonical A-convex containing space, which is called
the A-convex envelope in [4].

Another phenomenon that should be mentioned in this summary is that different
A-convex containing spaces can give rise to different complex interpolation spaces. On
the other hand, if {; and I{; are two A-convex containing spaces for a pair (X, X;) and
there is a Hausdorff topological vector space A in which both of them are continuously
contained (in the sense that the elements of the sum space X + X, are mapped to the
same points of .4 by both inclusions), then the spaces (Xo, X;)[g),4, and (Xo, X1)[a)1,
are the same. Thus for example, all the A-convex containing spaces that are subspaces
of the space of tempered distributions are equivalent for this interpolation method. Also
if #4; C U the corresponding interpolation spaces are the same for ) and ;. Finally,
if the sum space is A-convex, for example in the Banach space case, the interpolation
spaces are subsets of the sum and all the A-convex containing spaces are equivalent.

Finally we point out that in [4] it is shown that typical examples like couples of
P, L?, H? or T} spaces have A-convex containers and therefore their interpolation lies
within the scope of this theory.
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2. Identification of the interpolation spaces in the intermediate cases

The first idea for dealing with the couples (T}°,T}!) is that the tent spaces T7,
0 <p< oo 0 < q< oo, are subspaces of vector-valued L? spaces. More precisely:
if LP denotes the ordinary L? space on R™ with respect to the Lebesgue measure and
L{ denotes the L9 space over R} with respect to the measure %?—.,#, the operator T
which maps a function f: Ri‘“ — C into a function over R™ whose value at z € R" is
the function T f(z) defined by

Tf(:r:)(y, t) . f(y! t)Xr(z)(y,t)

is an isometry from T? into LP(L{), if 0 < p < co and 0 < ¢ < 0. See [4] for details
about the measurability of Tf. We will prove later that, for 1 < p,¢ < oo, I} are
actually complemented subspaces of L?(L!). This result may be useful not only in the
identification of the interpolation spaces, but also on the quick proof of some properties
of T¥ spaces from the corresponding ones of L*(LY). For example, it follows that T7 is
reflexive whenever 1 < p, ¢ < co.

We recall that in [4] an A-convex containing space V was exhibited for the pair
(LPo(L%), LP(L¥)) when 0 < pj,q; < 00, j =0,1 (in [4] only the case where the
parameters are finite is worked out, but the other cases follow the same pattern). From
this space V, an A-convex containing space W was constructed for the pair (Tf?, I),
whenever 0 < p; < oo and 0 < ¢; £ oo, § =0,1, in the following fashion: f € W if
Tf € V and the quasi-norm of f in W is defined to be || f]l,y = |ITf|ly-

Interpolating the operator T: Tj! — LPi(LZ'), j = 0,1, asin [4, lemma 4], we arrive
to de norm decreasing inclusion

(T8 Te ew € I3, (3)
whenever 0 < pj,g; < 00,7 =0,1,1/p=(1-8)/po +6/p1 and 1/g = (1 —8)/q +6/¢.11.
Using the duality theorem for complex interpolation, we can now prove that equality
holds if 1 < pj,q; < oo, § = 0,1, [4, proposition 5]. We next prove this result by a
different method.

Let F be a complex-valued measurable function over R" x RS shuch that it is
locally integrable with respect to the first argument. Then we consider the function
over Ri‘“ defined by

MF(y,6) = = | Flsigt)ds. (4)

|B(¥, )| Jp(y.0)

The expression I1F makes sense if F is a simple function over R" whose values are
measurable functions over R';_H, ie. an expression of the form:

h
F(s;y, t) = Z'»bf(yi t)XE,- (‘9);

i=1

where E; are measurable subsets of R™ and y; are measurable functions on Ri‘“.
Therefore, (4) makes also sense if ' € L?(LI) and 1 < p,g < oo.
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The following informal remarks may be worth mentioning despite the fact that
they will not be used in the sequel. If we consider the function on Ri’“ defined by
M(y,t) = |B{y,t)] and the vector-valued function on R"

1
w(s) = 2 X

we have, formally, a vector probability density on R", since

f.. w(s)ds =1,

where the last equation means that the integral is the identically equal to one function.
Thus IIF is, at least formally, the mean of F' with respect to w, namely:

IIF = /R," w{s)F(s)ds.

Theorem 1. Let 1 < p,q < co. Then the operator I is bounded from LP(L) into
T7. Furthermore, the composition I1 o T is the identity operator in T} and thus T} is
a complemented subspace of LP(L{).

Proof. The fact that II is a retract of T is clear. For the boundedness of II, we can
observe that under the dual pairing (1) IT is the adjoint operator of T and therefore it
is bounded as claimed.

Theorem 2. Let 0 <8 <1 and1l < pj,q; <oo,j=0,1, then
(T.Do Tpl){‘"] - T;,

o'
where the relations
1-¢ @ 1 1- g @

1
- +— and - = +—
r Po 0 q o qi

hold.

We observe that, since we are now in the Banach space case, we don’t need any
subscript W in the notation of our interpolation functor.

Proof of theorem 2. By (3), we only have to prove the inclusion

TP C (T2, T Y-

o’ q

IffeT let F=Tf¢e LP(LY)=(L?°(LI), LP (LI })g)-

Let ® € F(L?°(LI"),LP(L')) be an admissible function with $(8) = F. Then
Ilo® € F(T}P,T7!) is an admissible function for the pair of tent spaces whose value at
8 1s f. Thus the equality is proved.

We now pass to cover the general intermediate case.
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Theorem 3. Let 0 < 8 <1 and0 < pj,g; < o0, j=0,1. If W is the above mentioned
A-convex containing space for the pair (TE?, TP'), then

o' v
(T i mw = 17,
if the relations
1 1—-6 @ 1 1—-8 6
- = +— and -= o+ —
p Po F 51 q o f

hold.

Proof. Again from (3), we only have to prove one inclusion. The idea is to reduce the
proof to theorem 2 by a convex reduction argument. Let M > 1 be an integer such
that Mp;, Mg; > 1, j = 0,1. Let f € T? be a simple function with compact support.
We can find another simple function g such that g™ = f. Then []g”;f:‘fy = {flizs- By
theorem 2, we know that )

(Tageds Tagn Doy = Tagy - (8)

1t follows that g € Tas2® N Tarr'. We apply now a lemma of Stafney [13] and conclude
that there is, for each ¢ > 0, a function

G € G(Tper?, The )
that verifies G(9) = g and [[Gll,, < (1 + €}lgll(q -
Set F = GM. The function F has finite rank and is T7? NTFi-valued, F €
G(Tre, TP) and

qo " qs

1F@lyzs = 1GE@igpess
j=0,1. Thus |Flly, = |Gll%, F(6) = f and

1y < (1 + M llgllia
<1+ MCM gl
S+ MM fllpe, (6)

where the constant C' comes from the equivalence of norms in (5) and depends on M.
Since the class of all simple compactly supported functions f is dense in the tent
spaces TF, 0 < p,q < oo, the theorem is proved.

We now turn to the identification of the interpolation spaces with respect to the
A-convex envelope.

In this respect, it is convenient to recall the complex interpolation method of Riviére
[12], Cwikel, Milman and Sagher [8]. We will denote by || - ||, the quasi-seminorm intro-
duced by these authors in the intersection of any complex quasi-Banach pair (X, X1 ):

lelly = inf(llglla: g € G(Xo, X1) 9(6) = }.
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If the quasi-Banach couple (Xp,X;) has an A-convex containing space I{, then the
inequality {|zl|g ;4 < llz||4 holds on the intersection and || - ||, is & quasi-norm. We next
see a way of ic{entifying the interpolation spaces with respect to the A-convex envelope.

Lemma 1. Let (Xo,X;) be a complex quasi-Banach couple with an A-convex con-
taining space U{. Suppose that the quasi-norms || - "[a],u and || - ||, are equivalent on
Xo N Xy, then the identity

I (Xo N X1, 1l - gy, a) = (KXo N X, - Njgg.e)

extends {o a topological isomorphism between (Xo, X, )jg),4 and (X, X, ey u, where A
denotes the A-convex envelope of the sum space X + X;.

Proof. The continuous inclusion J: Xy + X; — U extends to a bounded operator
Ja:A — U. The operator J4 maps X; onto X; with constant 1, 7 = 0,1, (it is the
identity on these spaces), so

Ja:(Xo, X1)ig,4 — (Xo, X1)o),u5

also with constant 1.
On the other hand, we have the inequality [[z[|4 4 < [l#]ls holding on Xo N X1,
thus: '

lzlliey,a < llzlle < Cll=llig,e < Cllzllig, a0

for each z € X N X;. Hence we have proved that the quasi-norms || - ]|[9] aand || <[l
are equivalent on Xy N X; and using the density of the intersection 1n the compl]ex
interpolation spaces, the lemma follows.

Theorem 4. Let 0 < pj,qj < 00, j=0,1,0<8 <1, 1/p={1—~8)/po+8/p and
1/g = (1 — 8)/go + 8/q1. Then, the identity on TF* NTF! extends to a topological
isomorphism between (T7?, Ti!)(g),4 and T},

Proof. With the aid of the preceeding lemma, it is enough to prove that |- ”{9] w 18
equivalent to || - ||, on TFe N TF:. To see this, we observe that the function F appearing

in the proof of theorem 3 is of finite rank. Hence we could have written in (6):

£y < CMIfllgs.

Therefore, since ”f"T'p < 1 fligg,w < [fllg, the result follows for any simple compactly

supported f and therefore for any f € TP NT7'. This completes the proof of the
theorem.

We end this section by showing that, in some cases, we can claim that we have an
isometric identification in theorems 3 and 4.

Theorem 5. Let 0 < py,qp <00, 0< 8 <1 and X >0. Then
(T Togs helw = T

e Y Ago
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isometrically, if 1/p = (1~ 8)/po+8/(Ape) and 1/q = (1—8)/q0 +8/( o). Furthermore,

the identity on T2? ﬂT;‘;’ ® extends to a linear isometry between (T;n", Tj:o" J#), 4 and IR

. . . . +1
gr?iof. Let f be a simple non-identically zero compactly supported function on RJ™".
efine:

1 (2-2)-8
o(z) = | £]73 %00 "% f.
A
7
It is clear that ® € G(TF2, T,‘?;L“) and ®(8) = f, thus ||f]|, < [|®]|,;- We observe that

11 1 1)
P(m‘a)”(ma) o
C(z—8)
i
) "( ufuT,») ¢

fl -8
|8(it) =( "—}!—[T—) 17l

but ~C8 = —1 + (p/po), thus |&(it)| = | f|¥/* "f";':("’/m). From this, it follows:

] (1—L)p dydt ro/do
Iz, = Iy ([ worghr) T

(1—7%)p 113
= [Ifllgy """ jR Aof(z)% da.

and we can write

We now estimate [[®]],,.

Since po/gqo = p/q, we get
I8GONgg = 17157 [ Aef() d= = 1715

In a similar fashion, {|#(1 4 it}[|;2se = HfHT: and ||®][, = []f[]T: Therefore, we have
Agq
proved that °
£l w < BFlle < W2ll2e = 1l < [l 00

and, by the density of all simple compactly supported functions, we arrive to the equality
of the quasi-norms

- g =11~ llg
on the intersection. If we observe the proof of lemma. 1 in the case that the quasi-norms
|| - Il[,,] y and || - ||, are not only equivalent but equal, we will observe that the isometry

between (T;:J“,T: ;L *)ioj,4 and T7 is established.
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3. Remarks on some extreme cases

We start by recalling that the identifichtion
(TR, T hia = T,
where 1 < po,p1 < 00,0<8<1and1/p=(1-6)/ps+8/p, has been obtained in [1].

Lemma 2. Let 1 < pj,q0,q1 < ccand 0 < & < 1. Let p = p;/8 and 1/q =
(1-6)/g0+6/q1, then

(T, Tq ey = 17 -

Proof. We apply the duality theory of the tent spaces as well as the duality theorem of
complex interpolation. We use the fact that T}! is reflexive and theorem 3. We get

T} =(T3) = (T4, T = (T3, T3 as

and the lemma is proved.

Proposition 1. The formula

(T T he = T4,

is valid whenever1 < gp < 0 and1 < py,q1 < 0,0 < 8 < 1 and p and q are determined
as in lemma 2.

Proof. We just apply theorem 3, lemma 2 and Wolff's reiteration theorem [14].

The above argument cannot be directly applied to cover the case where 0 < py, ¢ <
oo because we don’t have Wolff’s reiteration theorem for the complex method in the
quasi-Banach case. However Gomez and Milman obtained in [10] a2 Wolff type theorem
which is valid for lattices. It can be applied joint with theorem 3 and lemma 2 to obtain
the following:

Theorem 6. Letl < gg < 00,0 < p1,¢1 <00,0< 8 <1, p=p/0 and 1/q =
(1—8)/go + 6/q:, then the quasi-norms || - "T,’ and || - ||, are equivalent on Tgo NTP!,
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1., INTRODUCTION

I think that most of the results which I will present here
will be new for most participants, but the main aim of my talk
is not so much to present new results, but rather to draw
attention to some interesting research problems. All of these
problems are related to the so called general theory of
interpolation spaces, more specifically, to the construction and
study of the properties of various interpolation methods.

The development of this theory is still far from complete.
There are two important considerations which have motivated its
development up till now and which should continue to do so in
the future.
¥ First, the theery should give us a stable framework for
calculations which before were obtained by good luck and
ingenuity.
¥ Secondly, it should be able to give timely answers to new
questions which constantly arise in applicatiocns.

At the same time, specific calculations and applications are a
powerful stimulus for the development of the thecry. Indeed, its
without the

accumulation of a "critical mass" of concrete results. Such a

successful development is impossible prior

"critical mass" had collected at the end of the fifties, and it
led to the glorious period of formation and development of the
theory during the years 1959-1966. Since then some important
papers have appeared from time to time in this field but of
course their gquantity (not guality) cannot bhe compared with that
stream of dealing with <calculations and

powerful papers



